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Abstract-Most conventional methods for the analysis of fold structures are founded on the assumption of 
cylindricity. It has been repeatedly shown that these methods can be useful for dealing with a wide range of 
structural geometries, even those for which the assumption is only approximately valid, e.g. structures produced 
by the interference of superimposed fold sets. In some instances though, such as in the analysis of oil-field 
structures. it is the presence and type of non-cylindricity in a structure which is of primary interest. The 
description of such folded surfaces requires more general methods of analyzing surface curvature based on the 
principles of differential geometry. The Mohr circle construction, already familiar to structural geologists in the 
context of stress and strain, is shown to be useful for the analysis of surface curvature and torsion. A practical 
method of mapping principal curvatures and their trajectories, involving the application of the Mohr circle, is 
described and applied, by way of example, for the survey of the Goose Egg Dome in Wyoming and a small-scale 
fold from Laksefjord, Norway. 

INTRODUCTION 

The description of folded surfaces for geological pur- 
poses is usually accomplished with reference to the 
cylindrical fold model. A cylindrical fold is one which 
yields identical cross-sections when sectioned serially. 
For this reason the model can be thought of as essentially 
two-dimensional; the important features of the surface’s 
geometry (e.g. fold tightness) are portrayed in any single 
section plane parallel to the line of greatest curvature. 
Terms such as hinge line, true profile and inflection line 
have definitions which assume, often implicitly, that the 
folds concerned are cylindrical. In spite of the restric- 
tions of the model, natural folds approximate cylindrical 
geometry sufficiently closely, and sufficiently often, to 
make this simple approach to fold description practi- 
cable. 

distributed across the surface. For the calculation of 
curvature at points on a surface the Mohr circle con- 
struction is found to be useful. The representation of 
curvature determined by this method leads to a form of 
display which is complementary to the structure contour 
map, the traditional way of representing the geometry of 
non-cylindrical folds. 

With some structures however the cylindrical mode1 is 
less adequate. These include some of the structures 
produced by non-coaxial refolding (domes, basins, per- 
iclines) and some weakly developed structures of low 
amplitude. Even in such cases the cylindrical fold 
approach is sometimes still used, by taking small enough 
patches or domains and analyzing them separately 
(Turner & Weiss 1963, pp. 148. 171). The justification 
for this lies in the assumption that a structure which is 
non-cylindrical consists of smaller portions which are 
more cylindrical. It is not difficult to visualize structures 
for which this assumption is invalid. 

The structure contour map is probably the most 
commonly used type of display for representing non- 
cylindrically folded surfaces. Such maps allow the 
ready identification of certain fold features. In particu- 
lar, those features relating to relative elevation of 
points such as the position of culmination points, de- 
pression points, crest lines and trough lines and the 
relative steepness of dips at different points on the 
surface can be directly appreciated. The positions of 
these features on any folded surface however are 
influenced by the overall orientation of the surface 
with respect to the horizontal and for this reason are 
not features which are useful for defining the intrinsic 
geometry of a surface (Ramsay 1967, p. 346). The 
main limitation of the structure contour map is its 
inability to represent the more important, rotation- 
invariant property of curvature. 

This paper suggests a genera1 technique for analyzing 
folded surfaces that is free of assumptions regarding the 
degree of cylindricity possessed by the structure. The 
method, which by necessity is three-dimensional since 
there need be no direction along which the structural 
geometry remains constant, analyses the folded surface 
by determining the local state of curvature at points 
56 ,1:5-t 
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In the case of cylindrical folds the definitions of most 
of the important features of a fold depend on curvature 
(e.g. hinge and inflection lines and dependent features 
such as limb, interlimb angle, wavelength, etc.). 
Although the corresponding terms for non-cylindrical 
folds are not yet defined, the property of curvature is 
likely to be important in relation to the mechanics of the 
folding process and the occurrence of strain-related 
features associated with folds. For example it has been 
suggested that the curvature of non-cylindrical folds may 
relate to the strains within the plane of the bedding 
produced during folding (Lisle 1992a). 
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CURVATURE OF SURFACES 

The geometrical theory of surfaces has seldom been 
applied to geological folds, though the potential for such 
applications is pointed out in the texts by Ramsay (1967, 
pp. 345-347) and Suppe (1985, pp. 311-313). A wealth 
of relevant literature exists in the field of differential 
geometry (e.g. Kreysig 1964, O’Neill 1966, Lipschutz 
1969, Calladine 1986, Nutbourne & Martin 1988) of 
which Hilbert & Cohn-Vossen (1932) and Koenderink 
(1990) are particularly accessible for the non- 
mathematician. 

In a cylindrical fold the curvature at any point on the 
surface is unambiguously defined by means of single 
value (scalar) calculated as the reciprocal of the radius of 
curvature of the section of the surface seen in true profile 
(Fig. la). 

In non-cylindrically folded surfaces the situation is 
more complicated because the profile plane is not de- 
fined for this type of surface. The curvature measured 
depends on the direction of the curve considered (Fig. 
lb). There is an analogy here with stress and its com- 
ponents acting on planes passing through a given point 
P, where the normal and shear stress components vary 
depending on the orientation of the plane considered. 
Like stress, curvature at a point on any surface can be 
described by means of a second-order tensor. Before 

a 

Fig. 1. Curvature of surfaces (a) cylindrical fold. Curvature (k) at a 
given point is represented by a scalar cqual to the reciprocal of the 
radius of curvature measured on the fold’s true profile (b) general 
surface. No true profile exists, curvature at a point P depends on the 
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discussing the nature of the tensor it is necessary to 
explain different ways of defining curvature. 

Space curves 

Some important geometrical properties of surfaces 
are described by means of the properties of curves which 
lie within them. For this reason the discussion of surfaces 
has to be preceded by the mention of curves as separate 
entities, without reference to the surface on which they 
lie. Curves described in these terms are called space 
curves (Nutbourne & Martin 1988, pp. 16-72). 

Figure 2 shows an example of a space curve. At any 
point P along it, three unit vectors can be defined. These 
three vectors define a reference frame for describing the 
curve at P. This is called the space curve frame. 

The first of the three vectors which define the space 
curve frame is the line of tangency t of the curve at P. 
The second is defined with reference to the plane which, 
locally at P, contains the curve. This plane, called the 
osculating plane, can be defined as the limiting position 
of a plane passing through P and two points on the curve 
at opposite sides of P as these points approach P. This 
plane contains t and the second unit vector, n which is 
perpendicular to t. The third vector, b, the so-called 
binormal vector (Fig. 2), is the direction normal to the 
osculating plane. 

The three orthogonal axes that define the space curve 
frame, change orientation as we move away from P 
along the curve. The moving trihedron is the name given 
to the assembly of three planes (the planes normal tot, n 
and b, respectively) which bodily rotates with changing 
position along the space curve. 

At P the curvature of a space curve, k, is the rate of 
change of the direction of the tangent vector t with 
distance s along the curve (Fig. 3a). It measures the 
deviation of the curve from a straight line in the neigh- 
bourhood of P. By definition, the curvature of the space 
curve is displayed in the osculating plane. In the immedi- 
ate vicinity of P the curve is an arc of a circle in the 
osculating plane with radius r. The latter is called radius 
ofcurvature and can be used to calculate the curvature k 
of the space curve: 

k = llr. (1) 

normal vector, 
n 

t, tangent vector 

b, binorrnal vector 

Fig. 2. A space curve and the space curve trihedron at a point P at a 
certain distance s along it. Trihedron is defined by the orthogonal 
vectors t, n and b. Plane containing the normal n and tangent t is also 

section plane being considered. the plane containing the space curve locally at P. 
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a Curvature k = 1 I r 

Fig. 3. Properties of a space curve. (a) Curvature is the rate of change 
oft with distance along the curve. (b) Torsion is the rate of change of b 

with distance s along the space curve. 

The sign of k depends on which side of the curve the 
centre of curvature lies. The units of k are m-l. 

The torsion of a space curve, t at P is a measure of the 
rate of change in attitude of the osculating plane, with 
change of S. Alternatively the torsion can be visualized 
as the rate of change of the binormal vector b, as the 
latter is by definition perpendicular to the osculating 
plane (Fig. 3b). Torsion is formally defined from: 

b’ = --t n (Nutbourne & Martin 1988, p. 24). (2) 

A space curve with zero torsion is a plane curve. 

Surface curves 

Ways are now considered of describing the shape of 
curves which are no longer hanging unsupported in 
space like those discussed above, but are contained 
within a flat or curved surface. This is done with the aid 
of the surface curve frame (Fig. 4a) which again consists 
of three orthogonal axes and a triplet of planes contain- 
ing pairs of axes (the surface curve trihedron). As with 
the space curve frame, the curve’s tangent defines one 
axis, t. Another axis N is the normal to the surface and is 
not to be confused with n, the space curve normal. The 
third orthogonal axis is labelled T. The plane containing 
t and T is called logically the tangent plane; the plane 
containing N and t is the cleaver plane (Nutbourne & 
Martin 1988, p. 115). 

For any curve that lies on a surface we have two 
alternative ways of describing its local properties. At any 
point along it we have the space curve frame and the 
surface curve frame and their corresponding trihedra. 

The two trihedra always share a common axis, the t 

N 

b 
N 

N ” n 

Fig. 4. Surface curves. (a) The surface curve frame defined by the 
surface normal N, the tangent t and perpendicular T. (b) Surface curve 
and space curve frames compared. Tangent t is shared by both sets. # is 
the angle between N and band describes the relative tilt of both sets of 
axes. (c) View of frames looking along the direction of t. (d) The 
normal curvature k. and geodesic curvature k, are the projections of k 

onto the N and Taxes, respectively. 

axis, which means that a rotation about this axis can 
bring the two trihedra into coincidence. The angle # is 
the rotation required to bring N, the surface normal, into 
coincidence with b, the binormal axis of the space curve 
frame (Figs. 4b & c). If @ is 90”, the osculating plane of 
the curve coincides with the cleaver plane, i.e. n is 
parallel to N. If $ = O”, the curve is an in-plane curve (cf. 
folded lineations which curve independently of the sur- 
face containing them, Ramsay 1967, p. 473). 

In general the curvature of the curve, k, can be 
thought to have two components, the normal curvature 
of the curve (k,) and the geodesic curvature of the curve 
(kg), found by resolving k onto two axes of the surface 
curve frame, N and T respectively (Fig. 4d). k, is the 
curvature of the projection of the curve onto the cleaver 
plane; k, is the curvature of the projection of the curve 
onto the tangent plane. The relative magnitudes of k, 
and k, depend entirely on the angle @, namely 

k, = k sin 4 (3) 

kg = k cos I$. (4) 

The three measures of curvature are related by: 

kZ = k,2 + k;. (5) 

In the space curve frame the torsion t has been already 
defined as the rate of rotation of the osculating plane 
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with distance s along the curve. If the curve lies on a 
surface the surface to~.sio~ of the surface curve, tg, can 
also be calculated (Nutbourne & Martin 1988, p. 118): 

zg = z f #’ (6) 

where $’ is the rate of change of Cp when moving along 
the curve, i.e. the relative rotation of the two trihedra 
per unit distances along the curve. tg is sometimes called 
the geodesic torsion of the surface cwve. 

Surface curvature and torsion 

Defining the curvature of a surface is more compli- 
cated than a curve because the former depends on the 
section plane on which the surface is viewed. To simplify 
the task we will consider at any point only normal 
sections of the surface, i.e. the two-dimensional form of 
the surface as seen on planar sections which contain N, 
the surface normal. 

Through any point P on the surface there are an 
infinite number of curves going off in different directions 
(Fig. 5a). These curves are all plane curves since they are 
produced by planar sectioning. They therefore have 
zero torsion at P and, because their osculating planes are 
parallel to their respective cleaver planes, their curva- 
tures are equal to the normal curvatures ($ = 90’). It is 
important to note that if we move away from P, along 
one of the plane curves, the cleaver plane generally parts 
company with the osculating plane, thus changing the 
value of $. At P, the rate of change of $ along the curve 
depends on which plane curve is being considered. With 
the exception of two special orthogonal curves, crj’ has a 
non-zero value. It therefore follows from equation (6) 
that generally these surface curves have non-zero values 
of surface torsion (zg f: 0), even though as space curves 
they possess zero torsion (t = 0). 

a 

b 
Fig. 5. (a) Normal curvatures of a surface at P vary depending on the 
direction of the section plane. (h) Principal curvatures kt, k, arc the 

extreme values of curvature at P; they are mutually orthogonal. 

Principal curvatures 

The normal sections of the surface yield surface curves 
whose normal curvatures and surface torsions vary in an 
orderly manner as the direction of the curve through P 
varies. The extreme values of curvature are associated 
with two orthogonal directions in the surface called the 
principal curva&m directions (Fig. 5b). The values of 
curvature in these special directions are the principal 
curvatures, kl and k2 where k, 2 k2. The principal 
curvatures may have opposite signs. The principal cur- 
vature directions are special in another respect; they 
possess zero surface torsion. 

The Gaussian curvature K, defined as the product of 
the principal curvatures (K = k, k,), is a measure of the 
amount of double cu~ature present at a given point in a 
structure. 

Dupin’s indicatrix is a geometrical representation of 
the variation of normal curvature of paths through a 
point P on a surface as a function of the direction of the 
path, 8. This consists of a curve (Fig. 6) in polar 
coordinates (R, S), where R = l/k;‘“. The radius (R) of 
the indicatrix in any direction is therefore equal to the 
square root of the radius of curvature (r) in that direc- 
tion. Curvature k in any direction is given by: k, = l/R’. 

The indicatrix is named after Charles Dupin (1784- 
1873). The equation of Dupin’s indicatrix is: 

k,x2+ k2y”= -t-l. (7) 

The overall shape of the indicatrix depends on the signs 
of k, and kz: 

(a) If the point under consideration is convex or 
concave with kl and k2 having the same sign, the indica- 
trix is an ellipse (Fig. 6a). 

(b) If the point is saddle-shaped, with k, and k2 having 
opposite signs, the indi~atrix consists of two hyperbolas 

a 
R = l/k”” 
k =lfR’ 

b 
Fig. 6. Dupin’s indicatrix is a representation of the variation of 
normal curvature k with direction of the section plane 0. (a) Elliptical 
point where k, and kZ have the same sign. (hf Hyperbolic point where 

k, and k, have opposite signs. 
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which have the same asymptotes (Fig. 6b). There are 
two directions, the asymptotic directions, for which the 
radius of curvature is infinite, i.e. they are straight lines. 
The latter represents a pair of curves through P, sym- 
metrically arranged with respect to the principal curva- 
ture directions, which have zero curvature (Kreyszig 
1964, p. 134). 

(c) If one of the principal curvatures is zero, the 
indicatrix consists of a pair of straight lines. The indica- 
trix indicates that there is now only a single asymptotic 
direction, one direction with k = 0 (i.e. R = ~0). 
Dupin’s indicatrix has another interpretation. If the 
surface is sectioned by a plane parallel to the tangent 
plane on a height just above or below P the resulting 
section has a form which matches closely Dupin’s indica- 
trix. In this way, curvature properties of points on a 
surface can be deduced from the patterns defined by 
topographic contours (Koenderink 1990, p. 229) or 
structure contours (Lisle 1992a). Points on a surface can 
so be classified as elliptic, hyperbolic (or anticlastic) or 
parabolic depending on the conditions (a), (b) or (c) 
listed above. If the point is hyperbolic, this section 
exhibits only one of the two hyperbolas constituting the 
indicatrix. When the indicatrix is a circle, k, = k2. Such a 
point is called an umbilicalpoint or umbilic (Struik 1961, 
p. 82). All points on a sphere are umbilical points, on a 
triaxial ellipsoid there are four umbilical points. 

Dupin’s indicatrix expresses a surprising property of 
continuous surfaces: in spite of the infinite variety of 
forms these can adopt, their local properties are orderly 
and simple. 

Directional variability of normal curvature and surface 
torsion 

A theorem by Leonard Euler published in 1767 
expresses the fact that the normal curvature k, of a 
chosen line through P can be simply derived from the 
principal curvatures, (kl, k,) and the angle 8, the angle 
between the considered line and the k, principal curva- 
ture direction. 

k, = k, cos’ 8 + k2 sin2 8. (8) 

The torsion z of every curve produced by sectioning 
the surface at P on planes containing the surface normal 
b is zero (since each such curve is a plane curve). 
However for these curves, the surface torsion tg ( = t + 
$‘), which depends on the rotation rates of the space 
curve and surface curve trihedra. is in general non-zero. 
The variation of rg with 6 is expressed by Sophie Ger- 
main’s formula (see Nutbourne 8r Martin 1988, p. 170): 

rGg = (kz - k,) sin 8 cos 8. (9) 

MOHR CONSTRUCTION FOR SURFACE 
CURVATURE 

The section below relies heavily on the description of 
the “circle diagram for curvature” given by Nutbourne 

Fig. 7. The Mohr circle for curvature. Each point on the circumfer- 
ence of the Mohr circle represents the normal curvature and surface 
torsion of a curve through point P on the surface. See text for 

explanation. 

& Martin (1988, pp. 174-180). These authors provide a 
history of the use of this diagram, to which mention of 
Jaeger (1966) could be added. 

Equations (8) and (9) describe the manner in which 
the principal curvature values and the direction of a 
curve (0) control the values of normal curvature and 
surface torsion, respectively. They can be re-written in 
terms of 213: 

k, = ;(k, + k2) + i(kl - k2) cos 28 (10) 

rg = -&(k2 - k2) sin 28. (11) 

These equations describe the coordinates (k,, zg) of 
points lying on a circle (Fig. 7), the Mohr circle for 
surface curvature and torsion (Nutbourne 1986). As 0 
changes, the points defined by the coordinates lie on a 
circle which is centred on the k, axis and passes through 
points k, and k 2. The centre of the circle is located at 
[f(k, + k,), 0] and its radius equals i(k, - kz). 

The Mohr circle serves to illustrate important proper- 
ties of normal curvatures and surface torsions of surface 
curves (Fig. 7): 

(a) kl and k2 are extreme values of k,; 
(b) principal curvature directions are lines of no 

surface torsion; 
(c) the curves with greatest surface torsion are at 45” to 

the principal curvature directions; 
(d) asymptotic directions (lines with k, = 0), are 

arranged symmetrically with respect to the principal 
curvature directions. There will be 2, 1 or 0 asymptotic 
lines depending on the signs of kl and kz. Figure 8 
illustrates the Mohr circles that correspond to elliptical, 
hyperbolic and parabolic points. The Mohr circle de- 
generates to a single point in the case of an umbilical 
point. 

The pole of the Mohr circle 

By analogy with the Mohr circle for strain (see, for 
example, Allison 1984, Lisle 1992b), the pole of the 
Mohr circle provides a direct link between the direction 
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Shape 

elliprical e.g. dome 

hyperbolic e.g. &d/e 

developable e.g. cyb&ical 

Principal 
Curvatures 

h ! 4 

Mohr 
Diagram 

same 
sign 

k, 

Fig. 8. The signs of the principal curvatures at a point on a surface 
allow the point to be classified as elliptical, hyperbolic or parabolic 
(developable). The Mohr circles corresponding to these classes are 
shown. The value of Gaussian curvature K is given by the square the 
length of the line labelled K”* on the Mohr circle. The Mohr circle 

corresponding to an umbilical point is one with zero radius. 

of surface curves in the tangent plane at P and their 
representation as points on the Mohr circle. To aid 
understanding of the concept of the pole we consider the 
Mohr diagram being physically drawn on the tangent 
plane at P, like a naughty pupil sketching on teacher’s 
mortar board (Fig. 9). The pole is a special point on the 
circumference of the Mohr circle which has the following 
property: 

The true orientation of a given curve in the tangent plane is 
found from its representation as a point on the Mohr circle 
by joining this point to the pole. 

The pole is found as follows (Fig. 9): 

From the right-most point of the Mohr circle (the point 
labelled k,) draw a chord across the circle in a direction 
parallel to that which the kl direction has in the tangent 
plane. The point where the chord cuts the circumference is 
the pole of the Mohr circle. 

Once the position of the pole is established, the k, and rs 
values of any curve through P are readily found: 

Through the pole draw a chord of the Mohr circle in the real 
orientation of the curve under consideration. The chord 
meets the circle at the point k,, tg. 

It should be noted that the use of the pole in this way 
implies a sign convention for rs which is the opposite of 
that used by Nutbourne & Martin (1988, p. 171). 

Finding the principal curvatures 

The Mohr circle construction can be applied to deter- 
mine the directions and magnitudes of the principal 
curvatures from values of normal curvature measured in 
a number of random directions through a point on a 
surface. Since the problem is analogous to the solution 
of the strain ellipse from strain rosette data, a similar 
method can be used. Such a method is described by Lisle 
& Ragan (1988). 

PRINCIPAL CURVATURE TRAJECTORIES 

Any path on a surface always tangent to a principal 
curvature direction is called a line of curvature orprinci- 
pal curvature trajectory. On any curved surface we can 
imagine two mutually orthogonal sets of such trajec- 
tories: one tracking kl, the other following k2. 

The surface torsion is, by definition, zero everywhere 
along a principal curvature trajectory. This means that 

Fig. 9. The pole of the Mohr circle provides the link between the orientations of different curves passing through a point on 
a surface and the representations of those lines as points on the Mohr diagram. Imagine the Mohr diagram is drawn on the 
tangent plane to the surface at a point on the surface. The pole of the Mohr circle is found by drawing a chord across the 
circle in a direction parallel to a principal curvature direction (e.g. k,) and through the point on the Mohrcircle representing 
that principal direction (point labelled k,). Once located, the curvature properties of any surface curve (portrayed as a point 

on the circle’s circumference) are found by drawing a chord through the pole in the direction of the considered curve. 
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the surface normal vector N may tip forwards or back- 
wards as the curve progresses, but it may not tilt side- 
ways (Nutbourne & Martin 1988, p. 125). 

The directions of trajectories are not defined at flat 
points on a surface. The same is true at umbilical points. 

PRACTICAL CURVATURE ANALYSIS 

A method is here described for calculating principal 
curvature trajectories for any folded surface. The 
method requires knowledge of the elevation of the 
folded surface at points arranged on a square grid. 
Curvatures are calculated at each non-peripheral node 
of the grid using the height of the grid point in relation to 
the eight nearest neighbours (Fig. 10): 

(a) These points are considered three at a time; the 
central grid node and a pair of opposing neighbours. The 
three points together define a space curve with a vertical 
osculating plane and a horizontal b vector. Curvature k 
of this curve is calculated by finding the radius of a 
circular arc passing through three points in a plane (see 
Appendix). 

(b) Four such curvatures, k,, kb, k, and kd referring to 
four different vertical sections can be calculated through 

1 Data Grid 1 

Fig. 10. Method used to calculate curvatures on a surface for which 
known elevations are arranged on a regular grid. Curvatures are 
calculated in specific grid directions using the heights of three points; 
the node plus a pair of opposing neighbours. Principal curvatures are 
found by Mohr construction using the ‘strain-rosette method’ of Lisle 

& Ragan (1988). See text for explanation. 

the grid node. The orientations of the b vectors of 
successive curves differ by 45” from each other. 

(c) To be able to convert these curvatures into normal 
curvatures the local orientation of surface normal first 
has to be determined. The average attitude of the 
surface at the node, and hence its normal vector N, is 
found by least-squares fitting of the node together with 
its eight neighbours to a plane (see, for example, Fergu- 
son 1988, pp. 102-104). 

(d) For each plane curve the angle @ can be found, 
being the angle between N and b. This permits the 
curvatures k,, kb, etc. to be converted into normal 
curvatures k,,, knb, etc. by applying equation (3). 

(e) From the information available at each node, i.e. 
four normal curvatures k,,, knb, etc. and their corre- 
sponding directions 8,, &,, etc., the Mohr circle for 
curvature is constructed using the procedure set out in 
Lisle & Ragan (1988). This involves finding the best-fit 
circle through four points on the Mohr diagram using a 
least-squares method (Lisle 1992~). 

(f) Once the Mohr circle has been constructed, the 
principal curvatures k, and k2 are fixed, and their direc- 
tions are simply determined using the pole. 

(id Steps G+(f) are repeated for each grid node. 
Quite clearly, the above calculations necessitate the 
application of a purposely written computer program. A 
version of the program being developed by one of us 
(JR) will allow the computation of principal curvatures 
from sets of data points (x,y, z) which are spaced irregu- 
larly across the surface. 

EXAMPLES OF CURVATURE ANALYSIS 

Goose Egg Dome, Wyoming 

To illustrate the proposed method an example is taken 
of the non-cylindrical Goose Egg Dome in the foothills 
of the Rockies in Wyoming. The structure consists of a 
periclinal anticline with approximate dimensions 4 and 2 
km, which folds a sequence of Mississippian-Cretaceous 
sediments. The structure is described by Harris et al. 
(1960) from which the structure contour map of the top 
Pennsylvanian (Fig. 11) is taken. The structure contour 
pattern confirms the non-cylindrical geometry of the 
anticline and of an adjoining saddle structure to the east. 
The overall elliptical shape of the contours suggests that 
the periclinal anticline has a direction of absolute least 
curvature in a roughly east-west direction and positive 
Gaussian curvature (Lisle 1992a). This type of deduc- 
tion warrants caution however since the type of contour 
shape (elliptical, hyperbolic, etc.) is a reliable indicator 
of the curvature present only at small portions of the 
structure, namely, in the vicinity of the points where the 
tangent plane to the structure is horizontal; at crest 
points, saddle points and trough points on the structure 
(Lisle in press). 

A more meaningful description of the structure comes 
from a survey of principal curvatures across the struc- 
ture. A square grid was superimposed on the structure 
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contour map in Fig. 11 and the elevations at the grid 
nodes interpolated. The estimation of heights of the 
surface in this manner is a significant source of error as 
the original data on which the stratum contours were 
based and our estimations of elevations are separated by 
two stages of interpolation. The calculation of curva- 
tures, a quantity related to the second derivative of the 
surface, will be sensitive to such errors. This must 
detract from the quality of our analysis of curvature in 
this example. The calculation of the principal curvatures 
and their directions at each grid node was carried out 
using the computer program (which incorporates the 
Mohr construction) described above. The results of the 
curvature analysis of the Goose Egg structure are dis- 
played on two maps; the Gaussian curvature map (Fig. 
11) and the curvature trajectory map (Fig. 12). 

Gaussian curvature (K) is the measure of the degree 
and type of double curvature present. It is calculated as 
the product of the principal curvature values derived 
from the Mohr circle method, i.e. K = ki k2. A cylindri- 
cal fold, for example, would consist entirely of parabolic 
points (points with K = 0) since at every point one of the 
principal curvatures is zero. The value of K is however 
not on its own an appropriate indicator of the deviation 
from cylindrical fold geometry since cylindrical folds are 
just one member of a class of fold surfaces called deve- 
lopable surfaces which consist entirely of points with K 
= 0 (Lisle 1992a). An additional property of cylindrical 
folds is the parallelism of the minimum absolute princi- 
pal curvature axes. Figure 11 shows the calculated values 
of Gaussian curvature across the region and highlights 
those areas where the structure deviates most from 
developable geometry. These are the vicinity of the crest 
of the dome where K is positive (dark grey shading), the 
saddle structure to the east (especially the north side) 
where K is negative (light grey shading) and minor 
patches on the S flank of the dome where the transverse 
synclinal furrows are superimposed on the overall con- 
vex upwards shape. The Gaussian curvatures calculated 
accord closely with those found by the angular defect 
method, an independent technique for estimating K 
(Lisle in press). 

Gaussian curvature is a geometrical descriptor of fold 
shape which expresses the surface’s departure from a 
developable geometry. Developable surfaces, which in- 
clude cylindrical-, conical- as well as some other ruled- 
surfaces, are geometries that can develop from folding 
of a non-stretching sheet, termed isometric folding by 
Lisle (1992a). The Gaussian curvature is zero at every 
point on such surfaces. The importance of Gaussian 
curvature measurement therefore lies in its potential to 
indicate portions of a structure with non-developable 
shapes which, for their formation, must have involved 
bed-stretching. The use of Gaussian curvature analysis 
as a tool for predicting strains (fracture densities) in the 
Goose Egg structure is the subject of a separate paper 
(Lisle in press). 

The curvature trajectory map (Fig. 12) shows the 
calculated principal directions of curvature across the 
structure, The directions shown are the axes of least 

curvature in absolute terms (regardless of sign). For 
cylindrical folding these directions would be parallel to 
the fold axes, so each direction can be visualized as the 
‘best local fold axis’. The term fold axis is used here 
loosely because the term is only formally defined for 
idea1 cylindrical folds. The trajectory map reveals a more 
variable pattern of folding that would be appreciated 
from inspection of the structure map. The crestal region 
of the dome for example is clearly a patch of more 
variable curvature directions than the apparently simple 
oval pattern of the structure contours would suggest. 
The method highlights the significance of modest embay- 
ments of the contours on the S flank of the dome. The 
local curvature axis can be transverse to the macroscopic 
trend of the structure, e.g. in the area of the saddle. 
Besides these, there are other portions of the map where 
the calculated curvature directions are locally variable. 
There are two likely explanations for this; firstly the 
imprecise data on the elevations of the surface, and 
secondly the existence of patches on the structure with 
approximately umbilical curvature, i.e. kl = k2. 

The curvature trajectory map (Fig. 12) provides the 
equivalent of the ‘tectonic cross’, a reference set of axes 
used to describe orientation in relation to cylindrical 
structures. For non-cylindrical folds a set of three ortho- 
gonal axes, comprising the local principal curvature 
axes, kl, kZ, and the surface normal N, provides a more 
meaningful local reference frame for observations on 
small-scale structures such as fracture patterns, cleavage 
orientations and palaeostress axes. In the case of the 
Goose Egg structure, this local reference frame is clearly 
variable in direction. Any minor structures maintaining 
a fixed orientation with respect to this local frame would 
show a highly variable relation with any global external 
tectonic cross for the structure. 

Fold from Laksefjord, N. Norway 

A second example is taken of a hand specimen of a 
band of quartzitic gneiss collected from northern Nor- 
way. The fold (Fig. 13a) is clearly non-cylindrical at one 
end, where its amplitude decreases. The dimensions of 
the fold are approximately 25 cm by 14 cm. 

A grid of elevations of the surface of the fold was 
obtained by sliding the fold around on a fixed sheet of 
graph paper beneath a fixed rig from which the elev- 
ations could be measured. The grid spacing was 8 mm; 
the elevations were read to 0.1 mm with an estimated 
error of kO.2 mm. The calculation of the Gaussian 
curvatures and the principal curvatures and their direc- 
tions was carried out directly on these measurements 
using the Mohr construction method. This avoids the 
problems of using interpolated data. The results of the 
curvature analysis of the Norway fold are displayed on 
two maps, one showing the structure contours and 
curvature trajectories (Fig. 13b) and the other showing 
Gaussian curvatures (Fig. 13~). Both maps display the 
curvature trajectories. 

Figure 13(c) shows that the highest values of Gaussian 
curvature occur in the northwest part of the map, this 
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Fig. 12. Curvature trajectory map for the top Pcnnsyl\,anian in the Goosc Egg Dome. The dashes are the directions of the 
principal curvature axis with the least ahsolutc magnitude. Thcsc directions can bc thought of as the ‘best local fold axes’. 
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corresponds with a visible doming of the surface, i.e. the Mathematics, University of Wales, Cardiff). Useful suggestions on the 

surface is notably curved in all directions (compare Fig. manuscript were made by Robert J. Twiss and an anonymous referee. 

13a). The lowest (negative) values of Gaussian curva- 
Steven Wojtal drew our attention to the work of Jaeger (1966). 

ture occur where there are shallow saddle points along 
the major fold axis where the maximum principal curva- 
ture direction is perpendicular to the major fold axis and 
where the minimum principal curvature axis corre- 
sponds to gentle undulations of the major fold axis. The 
low values of K at the far west end of the major fold axis 
is where an obvious saddle occurs. It is to be noted that 
filled fractures with transverse orientation (visible in 
Fig. 13a) occur in a region of high Gaussian curvature 
represented by the darkest shading at x = 80 mm, 
y = 85 mm on Fig. 13(c). 
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calculation of principal curvatures on folded surfaces are 
readily performed by means of the Mohr construction 

APPENDIX: THE CIRCLE PASSING THROUGH 

for curvature. 
THREE CO-PLANAR POINTS 

(4) Principal curvature trajectory maps provide at all 
points across a surface a local fold reference frame. 
These reference directions could assist in the analysis of 
structures produced by interfering fold sets and of frac- 
ture patterns in non-cylindrical structures. 

(5) A correlation is observed in the Norwegian 
example between the location of discontinuities (frac- 
tures) in the surface and the occurrence of strongly non- 
zero Gaussian curvature values. 

Choosing one of the three points as the origin, the problem involves 
finding the circle with centre (x,, yc) passing through points (O,O), (xi, 
y,) and (x3, ys). Referring to Fig. Al, chord 1 has slope y,/x, and its 
perpendicular therefore has a slope, m = -x,/y,. 

In the equation of the perpendicular bisector of chord 1 (y = mx + c) 
the constant c can be evaluated because this perpendicular passes 
through the point ($x,, iy,): 

Jy, = (-x,/y,)& + c 

Therefore, c = b(y, + x:/y,). 
The equation of the perpendicular 1 is therefore: 

Y = (-xl/y&Y + r(y, + x:/y,). 

Acknowledgements-This work was carried out as part of an extra- 
mural research contract with Shell Research, Rijswijk, Holland. The 

The equation of the perpendicular bisector of chord 2 can be found in a 
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similar fashion to be: 
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The centre of the circle (XC, YC) is found at the intersection of the 
* -- - c . perpendiculars to chords 1 and 2 and its coordinates by the solution of 

. 
, \ simultaneous equations (Al) and (AZ). 

/ \ This gives: 

Y, = (t, r* + g)/(l + Cl) (A3) 

where t, = -(xi ya)l(yi xs), t2 = $Cys + x:/y& rs = Hyi + x$yi) and 

xc = cy3/x3)(- yc + b)- (A4) 

Fig. Al. Finding the centre x,, yc of the circle passing through three 
co-planar points xi, y, x2 = 0, y2 = 0 and xj, y3. 


